8. Distributions
We approach to the finish of our analysis (see Figure 8.1). The determination of mathematical models of physical processes is often associated with passage to the limit in the balance relations describing a certain conservation law in an elementary volume (see Chapter 1 and Chapter 2). The justification of the passage to the limit in classical mathematical analysis is based on the Cauchy criterion, according to which any fundamental sequence of real numbers converges (see Chapter 3). However, the Cauchy criterion is applicable only in complete spaces, which are not too many (see Chapter 4). Nevertheless, any metric space can be extended to complete, and any of its elements can be arbitrarily closely approximated by the elements of the original space (see Chapter 41). The basic idea of ​​the sequential method is that any fundamental sequence of an arbitrary space becomes convergent in a certain sense after consideration its completion.
We used the sequential method for the definition of real numbers (see Chapter 4 and Chapter 41), р-adic numbers (see Chapter 5), and sequential controls (see Chapter 6). Another extremely important sequential object is the distribution considered below. This is important to us not only as another area of application of the sequential method, but also because the theory of distributions underlies the concept of the generalized solution of problems of mathematical physics (see Chapter 2). In addition, this is directly related to the main topic of our study. 
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Figure 8.1. Structure of the book.
We know that mathematical objects can have different interpretations. It was be true for the real numbers (Chapter 4 and Chapter 41) and p-adic numbers (Chapter 5). This is true for the distributions too. At first, we consider the standard definition of distributions by Schwartz. The distribution is a linear continuous functional on a set of functions here, i.e. the element of the adjoint space to this considered function space. Therefore, we have the necessity to describe, at first, the used function space (Section 8.1). Then we can give the definition of distributions and describe its general properties (Section 8.2). One of the most important properties here is the possibility of its differentiation. We give the strict definition of the generalized derivatives, which was be applied in Chapter 2. We consider also the sequential interpretation of distributions theory (Section 8.3). We shall make sure that the distributions and its properties can be described by sequential technique. Finally, the considered generalized derivatives are used for the definition of the Sobolev spaces (Section 8.4), which are the most important class of functional spaces of mathematical physics. 
8.1. Test functions
In the definition of the generalized solution of mathematical physics problems in Chapter 2, we used the concept of the generalized derivative. By Definition d2.4, the object $du/dx$ is called the \textbf{generalized derivative} of the function $u$ on the interval $(a,b)$, if it satisfies the equality
\[\int\limits_a^b\frac{du(x)}{dx}\lambda(x)dx\,=\,-\int\limits_a^b u(x)\frac{d\lambda(x)}{dx}dx\]                                                                                                (8.1)   
for all smooth enough function $\lambda$ with zero values at the points $a$ and $b$. We did not stipulate in advance what requirements are imposed on the function $\lambda$ here. However, it is clear that this is so smooth that both integrals of the equality (8.1) have the sense.  In Chapter 2, one considered examples that clarify the situation to some extent. Particularly, if we choose as $u$ the continuous function $v$ such that v(x)=|x| (see Example 2.2) and piecewise continuous function $w$ that equal to -1 for the negative values of the argument and 1 for its positive values (generalized derivative of $u$, see Example 2.3), than the function $\lambda$ is continuous. However, the function $\lambda$ is differentiable for the application of the equality (8.1) to the generalized derivative $y$ of $w$ characterized by the equality
\[\int\limits_a^by(x)\lambda(x)dx=2\lambda(0),\]
(see Example 2.4). Obviously, the weaker the properties of the object under consideration, the stronger the requirements must be used for the function $\ lambda $, so that the terms under the integrals of the equality (8.1) become integrable. 

The properties of the function worsen as a rule after differentiation. Particularly, continuous non-smooth function $v$ is the generalized derivative (and classic too) of the differentiable function $u$ determined by the equality (see Example 2.1)
\[u(x)=\frac{1}{2}x|x|.\]
The generalized derivative of the continuous non-smooth function $v$ is the discontinuous function $w$. Its generalized derivative is a strange object $y$ that is not function even. We would like to extend the differentiation procedure to the widest possible class of objects. It is desirable that this class is so wide that differentiation would not derive from this set.
Remark 8.1. We often considered the extension of a class of objects such that guarantee the retention on this set after performing some procedure (see Table 8.1). For example, the transition from a given metric space to its completion ensures that any fundamental sequence there is convergent. Extending the monoid to the group (see Chapter 41) ensures the invertibility of any element of the set. The transition from the set of natural (respectively, integer and rational) numbers to integers (respectively, to non-zero rational and complex) numbers guarantees the solvability of the additive (respectively, multiplicative and algebraic) equation. The extension of the set of rational numbers to the set of real Dedekind numbers guarantees that any cut of the considered set of objects will be determined by the object of the given class. In all these examples, a specific completion of the original class of objects with respect to the given procedure is realized.
Table 8.1. Examples of “completions”.
	initial class of objects
	procedure
	extended class of objects

	metric space
	convergence 
of any fundamental sequences
	completion 

of the metric space

	monoid
	invertibility of any elements 
	group

	set of natural numbers
	solvability
of any additive equations
	set of integer numbers

	set of integer numbers
	solvability

of any multiplicative equations
	set of non-zero rational numbers

	set of rational numbers
	solvability
of any algebraic equations
	set of complex numbers

	set of rational numbers
	definition of any cut 
by a rational number
	set of Dedekind real numbers

	set of functions
	differentiation of any functions
	set of distributions


It is necessary to choose the class of functions $\lambda$ with very good properties for obtaining the extremely large class of objects $u$, where the differentiation has the sense. We give the general definitions for the multidimensional case.  Let ( be an open set of the n-dimensional Euclid space Rn. Particularly, for one-dimensional case the set ( can be an interval 
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Definition 8.1. The support of the function u on the set ( is the smallest closed subset supp(u) of ( such that u is equal to zero outside supp(u).
Remark   8.2. The smallest closed subset of the given set is called its closure. [The set is closed, if this is a complement to an open set. The open set is the general topological property that is determined by axioms. Particularly, the topology of a set is the set of all open set here, see, for example, Calley, Bourbaki] 
Example 8.1. Support of the function. Consider the function of one variable determined by the formula (see Figure 8.2) 
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This function is not equal to zero on the interval (-1,1). However, this set is not closed. The smallest closed set that includes this interval is [-1,1]. Therefore, supp(u) = [-1,1]. (
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Figure 8.2. Support of the function.

We consider now the functions on the set ( with compact support, i.e. this support is bounded [The subset of the set of real numbers (and of the Euclid space is compact, if this is closed and bounded. The compactness is one of the general property of the set of topological spaces theory, see for example, Kelley and Bourbaki]. Particularly, the function u from Example 8.1 has the compact support.  
Example 8.2. Function with non-compact support. Consider the function u determined by the formula (see Figure 8.3)
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This function vanishes at infinity, i.e. 
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 However, its support is the set R that is not compact. (
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Figure 8.3. Function with non-compact support.

Definition 8.2. The infinite differentiable function on the set ( with compact support is called the test function.
Remark 8.3. In reality, the function with compact support is called finite. This notion is used, as a rule, if we consider it as an independent object. However, now we introduce a set of all functions that will be testable in relation to the notion of distribution introduced below. 
We shall determine the function $\lambda$ from the equality (8.1) as the test function on the set $(=(a,b)$. Denote by D(() the set of all test functions on set (. Note that for any functions of the set D(() there exists its derivative that is the element of the set D(().

Remark 8.4. By the final result, the differentiation is the first order operation on the set D(().
Determine the standard operations of the addition and the multiplication by numbers on the set D(() by the formulas
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 Now D(() is the linear space.
Suppose the sequence {(k} of the set D(() tends to zero function if and only if there exists a compact set K of ( such that the supports of all functions (k belong to К, and the sequences of the derivatives of arbitrary order of (k tend to zero uniformly on К. It means that 
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, besides the velocity of convergence does not depend from the point x of K; and analogical property is true for all derivatives of (k. Particularly, for one-dimensional case, we have the convergence
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Consider now the n-dimensional case with points 
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 with non-negative integer components is called the multiindex. Determine the differentiation operator 
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of order (, where 
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 The sequence {(k} of the set D(() tends to zero function if
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for all (.

Now the sequence {(k} tends to a function ( in D((), if the sequence of the difference 
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 tends to zero. The set D(() with this form of convergence is a topological space.
Remark   8.5. This space is not metrisable, that is this convergence does not described by any metric.

Suppose we have the convergence of the sequences of the infinite differentiable functions 
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 for all number a. Therefore, the operations of addition and multiplication by the number are continuous. Therefore, the set D(() with considered operation and convergence is the linear topological space. It very important that this space is complete [The proof of the completeness of the space D(() is given in Rudin].

Example 8.3. Non-complete metrisable space [This example is considered in Rudin]. Consider the set D(() with determined operations and easier topology that relevant the following convergence. Suppose the sequence {(k} of the set D(() tends to the function (, if 
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 uniformly on ( for all multiindex (. Then we obtain the linear topological space with metrisable topology. Consider one-dimensional case for (=R. Let ( be a function from D(() with support [0,1] that is positive on the interval (0,1) (see Figure 8.4).


[image: image24.wmf] 

j

 

j

 

j

 

0

 

1

 


Figure 8.4. Function ( of Example 8.3.
Determine the sequence of functions {(k} by the equalities (see Figure 8.5)
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The function (k is infinite differentiable, besides, its derivatives are determined by the formula  
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The support of the function (k is the interval [0, k] (see Figure 8.5). For any point х we have the convergence 
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We have the equality
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Therefore, we get
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where M = max (. Then
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The relation
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can be determined analogically. Thus, the sequence {(k} is fundamental. However, this is not convergent with respect to the considered topology of D((). Particularly, the function ( is infinite differentiable, but its support is non-compact set of non-negative numbers. Hence, the space D(() is non-complete with respect to the given form of convergence. This result clarifies the choice not of this but of the previously introduced non-metrizable topology of the space of test functions. (
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Figure 8.5. Sequence {(k}.
Remark 8.6. We shall determine soon another notion of the fundamentality (see Definition 8.6). The set D(() is non-complete too with respect to that form of fundamentality. It will be the basis of definition the distribution as a sequential object.
Now we determine the distributions on the base of linear topological space of test functions.
8.2. Schwartz distributions  
We know (see Chapter 3) that for any linear topological space X one determined its adjoint space that is the set X' of all continuous functionals on the set X. 
Definition 8.3. The distribution (more exact, the Schwartz distribution) on the set ( is an element of the adjoint space D'(() to the space D(() [The completely enough distribution theory is described, for example, in Schwartz …, Vladimirov…, ФА Крейна, Ю. Н. Дрожжинов, Б. И. Завьялов].
Remark 8.7. The distributions can have a real physical sense. It can describe the density of the material point, the intensity of the instantaneous source, the point charge, etc. In principle, any external influences on the system acting at individual points of the given region are described by distributions. 
Denote the value of the linear continuous functional u at the point ( of the space D(()  by 
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.  Note that the distributions do not have any values at the concrete points; there are not usual functions.  
Remark 8.8. Therefore, one uses sometimes the nomination “generalized function” instead distribution.
Remark 8.9. Sometimes we use the denotation u(x) for the distribution u, because the distribution can be reduced to usual functions at concrete points. 
Example 8.4. Local integrable function. Consider a local integrable function ( on the set (, i.e. this is integrable on the arbitrary compact subset of (. Determines the object u( that satisfies the equality
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                                 (8.2)
Indeed, for any function ( we have the number at the right-hand side of this equality. Therefore, we have the functional. It is linear because of the linearity of the integration. If we have the converged sequence of the infinite differentiable functions, then we obtain the convergence of the relevant sequence of the integrals. Hence, the functional u( is continuous. Thus, it satisfies Definition 8.1. Therefore, this is the distribution, in reality. 
Suppose (1 and (2 are local integrable functions; besides the following equality holds
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where ui is the distribution, which is determine by the equality (8.2) for ( = (i, i = 1,2. Then (1(x) = (2(x) for almost all point x, i.e. for all points except the points of a set with zero measure [The relation between the local integrable functions and the corresponding distribution is described in detail in Хёрмандер, (1983), The analysis of linear partial differential operators I, Grundl. Math. Wissenschaft., 256, Springer, doi:10.1007/978-3-642-96750-4, ISBN 3-540-12104-8, MR 0717035.]. Therefore, the operator 
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which maps any local function to the relevant distribution determined by the equality (8.2), gives embedding of the space of local integrable functions to the space distributions. (
Remark   8.10. We can identify the local integrable function and the distribution, which is determined by it.
Definition 8.4. The distribution is regular if it can be determined by a local integrable function. The distribution is singular if this is not regular.
Example 8.5. Jump function. Determine the regular distribution u( by the equality
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The relevant function ( is 
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This distribution is called jump function. (
Example 8.6. (-function. For a point ((( determine the object (( by the equality
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Obviously, this is the linear continuous functional on the space D((). Therefore, this is the distribution. It is called the (-function at the point XE "(-функция"  (. We could write formally 
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However, there is not exist any local integrable function that is determined this distribution. This is not associated with any function. (
The (-function is the standard example of the singular distribution. By ((x-() on describes the (-function at the point ( .
Remark   8.11. The (-function describes, for example, the density of the unit mass at the given point. 
Remark   8.12. The (-function can be described also by measure theory [The (-function and a class of distribution can be described on the base of Stieltjes measure, see, for example Reed,Simon, Halmos]. 
Thus, for all distribution u we can use the formal equality
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Determine the standard algebraic operations on the set of distributions by the equalities 
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for all distributions u,v and number a. Then the set D'(() is the linear space. 
Now determine a topology by the following convergence. The sequence of distributions {uk} tends to a distribution u, if the numerical sequence 
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Remark   8.13. The relevant topological space is not metrisable. 
Obviously, the linear operations are continuous. Therefore, the set of distributions with given operations and convergence is the linear topological space.

Example 8.7. Schwartz example. [Schwartz example about non-associativity of the distribution multiplication is determine by Schwartz, see also [Antosik, Egorov].]. Obviously, we can not only add, but also multiply the infinite differentiable functions. However, the definition of the multiplication for the distributions is not clear. At first, the definition of the distribution is based on the integration. However, the product of integrable functions can be non-integrable. The integration operation is by its nature additive, but not multiplicative, which creates serious obstacles to the interpretation of the product of distributions as a linear continuous functional. 
Consider now a one-dimensional set (, which included zero. Define three distributions u, v and w by the equalities
                                             u(х) = 1/х,  v(х) = х,  w(х) = ((х).                                      (8.3)   
The object w here is (-function at zero, i.e. the singular distribution, and v is the usual function. The object u has the singularity at zero point. Therefore, this is the distribution that is equal to the usual function 1/х outside an arbitrary neighborhood of zero [The properties of the distribution 1/х are described in …].

Suppose one determine a multiplication on the set D'((). Apparently, multiplying the objects u and v should yield the function that is identically equal to one. Then we have the equality
(u ( v) ( w  =  1 ( w  =  (.

The product  v (w satisfies the equalities
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by the definition of (-function. Therefore, we get v (w  =  0, i.e. this product is zero element of the space D'((). Now we have 

u ( ( v ( w)  = 0.

Thus, the following inequality holds
 (u ( v) ( w  (  u ( (v ( w),.
Hence, the multiplication of distributions is non-associative operation. This result shows that there are extremely serious difficulties in determining a natural operation of multiplication on the set of distributions. The naturalness of the operation here means that in the case when we operate with regular distributions that are, in fact, usual functions, the result will be a regular distribution corresponding to the natural product of these usual functions. [The discussion of the distribution multiplication is given, for example, in Egorov []. The serious enough theory of the distribution multiplication is described by Colombeau[].]. (
Remark 8.14. We might be able to reconcile ourselves to the absence of associativity of distributions multiplication, citing the fact that sometimes we consider the algebraic objects with non-commutative  multiplication [Particularly, the matrix multiplication and the multiplication of the quaternions that is a generalization of the complex numbers are non-commutative]. However, the absence of the associativity is more serious trouble than the absence of the commutativity [Sets with non-associative multiplication still occur in practice. Such, for example, are octonions belonging to the class of hypercomplex numbers. Each octonion is characterized by eight real numbers, just as a complex number is characterized by two, and the quaternion by four real numbers.]. We shall consider, particularly, a very strange corollary of the Schwartz example (see Remark 8.19).
Remark 8.15. The multiplication of distribution is very useful, for example, for nonlinear differential equations. Sometimes one consider equations that contain the degree of unknown functions, the product of two different unknown functions, the product of unknown functions by its derivatives, etc. If we interpret the solution of the problem as a distribution, we have the necessity to consider the multiplication of distribution.
The very important property of the distributions theory is the possibility of the determination of the derivatives for the arbitrary distribution.  

Definition 8.5. The generalized ( order derivative of the distribution u is the distribution D(u, determined by the equality  
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Prove that the generalized derivative 
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 that is determined by the equality (8.4) is, in reality, the distribution. Indeed, we have the classic operator of differentiation at the right-hand side of the equality (8.3). Therefore, 
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 is the functional on the space D((). Besides, the map 
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 is linear, because of the linearity of the classic operator of differentiation and the map 
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 in D(() by definition of the convergence of the space D((). Hence, 
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, because u is the continuous functional on D((). Thus, 
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 is the linear continuous functional on D((). Therefore, this is the distribution by Definition 8.3. 
Remark   8.16. Thus, the generalized differentiation is the first order operation on the space of distributions. 
One uses also the integral form of the equality (8.4)
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We have the following formula for one-dimensional case
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This is agreed with our previous definition of the generalized derivative (see Chapter 2), particularly, with formula (8.1).
Remark 8.17. We know that the properties of a function worsen after differentiation. Particularly, after differentiation of the function of 
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 (this is the set of т time continuously differentiable functions on the closure of the set () we obtain the function of the space 
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 (see Figure 8.6). Thus, one decreases the order of differentiability. Therefore, the degree of smoothness of the function worsens.  The analogic result is true for the Sobolev spaces  
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 (see Section 8.4). However, there exist two classes of objects, where this result is not realized. This is the space D(() of infinite differentiable functions. There are so “good” objects that are remain infinite differentiable after differentiation. This is also the space D'(() of distributions. There are so “bad” objects that it cannot to become “worse” after differentiation.
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Figure 8.6. Action of the operator d of generalized differentiation.
8.3. Sequential distributions

We have already know that mathematical notions can have different interpretation. This is true for the distributions too. Particularly, there exists its sequential interpretation. 
One of the general result of the Cantor’s theory of the real numbers is the possibility of determining of the irrational real numbers, as limits of sequences of rational numbers. Try to use this idea for the distributions. 

Example 8.8. (-function. Consider the singular distribution ( = ((x). Determine the functional sequence {uk} by the equality (see Figure 8.7)
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 by Mean value theorem (see Theorem 2.3). Pass to the limit as 
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,
because the function ( is continuous. Therefore, we have the convergence


[image: image72.wmf]()()()()  ().

k

xuxdxxxdxD

lldl

¥¥

-¥-¥

®"Î

òò

¡


Thus, we can interpreted (-function as the limit of the sequence of classic functions {uk}. 
Moreover, we can obtain the analogical result with using the sequence of the infinite differential functions
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Thus, (-function can be obtained as the limit of the sequence of infinite differentiable functions too. (
Thus, the singular distribution ( can be approximated by infinite differentiable functions similar the irrational number ( can be approximated by rational numbers. Moreover, we have the following result.
Theorem 8.1 [The possibility of determination of any distribution as the limit of sequences of infinite differentiable functions is proved, for example, in Vladimirov, Mikusinsky]. For any u(D'(() there exists a sequence {uk} of D(() such that uk ( u in D'(().
Remark 8.18. By this result, the space of infinite differentiable functions D(() is dense in the space of distributions similar the set of rational numbers is dense in the set of real numbers.
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Figure 8.7. Approximating sequences for (-function.

Remark 8.19. Return to the Schwartz Example and the problem of distribution multiplication. Suppose one determine a continuous multiplication there. Therefore, from the convergence of two distribution sequences it follows the convergence of the sequence of its products. By the density of embedding of the space D(() to D'((), each distribution can be determined by the limit of the sequence of infinite differentiable functions. Consider now sequences {uk}, {vk}, and {wk} of D(() that converges to the distributions u, v, and w, see the equalities (8.3). By the supposition of continuity of the distribution multiplication we have 
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Using the associativity of the usual functions, we determine that the sequence {ukvkwk} has two limit that is ( and 0. It means if the considered topological space is not Hausdorf space [The topological space is Hausdorf, separated or T2 space is a topological space in which distinct points have disjoint neighbor hoods, see Келли, Бурбаки. The example of the non-Hausdorf space is the antidiscrete space. Each point of this space has the unique neighborhood. This is whole space. Then any sequence of this space is convergent to all point of this space. Of course, the convergence has no sense in this situation.]. Non-uniqueness of the limit of the sequence is the catastrophic situation. So, not only is it impossible to introduce an associative multiplication operation on the set of distributions, consistent with the natural multiplication of usual functions. It turns out that we cannot define multiplication and a Hausdorf topology in such a way that this operation is continuous [This example of the sequence of infinite differentiable functions was by considered in моя статья]. This gives a very bad chance for the practical application of this distribution theory with continuous multiplication.
The obvious analogy between the rational and real numbers and the infinitely differentiable functions and distributions allows us to hope for the possibility of a sequential definition of distributions. Let again ( be an open set of n-dimensional Euclid space 
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, and D(() be our  space of test functions. We know that this is not metrisable. Therefore, the direct application of the completion theorem is not possible here. However, the space D(() has a good enough property that is not typical for the general topological space. Indeed, we can estimate the closeness of its two arbitrary elements. The space with this property is called uniform [The theory of uniformly spaces is described in Bourbaki, see]. We can determine the fundamental sequences here.  

Definition 8.6. The sequence {uk} of D(() is called fundamental, if for all compact set K of  ( there exist a multiindex ( and functions {(k} of D(() such that D((k = uk on the set К, and the sequence {(k} converges uniformly on K.  

Remark 8.20. This definition does not use the properties of uniform spaces. However, we cannot any possibility avoid these properties for the determination of the equivalence of these fundamental sequences. This is the analogue of the sequential controls definition, see Chapter 7.
By this definition, the numerical sequence 
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 has a limit, besides the velocity of the convergence does not depend from the point x of K. If the sequence {uk} is fundamental, then the sequence of its derivatives {Duk} is fundamental too for all order . Indeed, we can choose the order ( + with equality D(k = Duk on К and uniform convergence of the sequence {(k} on the set К. 
Remark 8.21. Note that the forms of sequence fundamentality can be diverse enough (see Table 8.2).
Table 8.2. Fundamentality and equivalence for different spaces.

	chapter
	space
	fundamentality 

of sequence {uk}
	equivalence of 

sequences {uk} and {vk}
	completion

	4
	set of rational numbers
	lim | uk+p - uk | = 0
	[| uk - vk |] ( 0
	set of real numbers

	5
	metric space
	((uk+p,uk) = 0
	((uk,vk) ( 0
	completion of the metric space

	7
	set of control
	( lim I(uk)
	[I(uk) - I(vk)] ( 0
	set of sequential control

	8
	set of infinite 
differential functions
	((, ({(k}( D(():  

uk = D((k, ( lim (k
	((, ({(k},{(k} ( D(():  

uk = D((k, vk = D((k,

((k - (k) ( 0
	set of distributions


Consider the set F of all fundamental sequences on the set D((). Determine the relation (   on the set F such that the condition {uk}({vk} is true, if for all compact set К from ( there exist an order ( and sequences {(k} and {(k} of D(() such that  D((k = uk, D((k = vk  on К, and the sequence of differences 
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 tends to zero uniformly on К. This relation is the equivalence on the set D(().
Remark 8.22. After definition of the sequence fundamentality, the definition of its equivalence is obvious enough. Two fundamental sequence are equivalence, if their elements approach each other in the corresponding sense (see Table 8.2).
Definition 8.7. The sequential distributions on the set ( are the elements of the factor-set S(() = F/(.

The sequential distribution is an equivalence class of fundamental sequences as Cantor real number, p-adic number, sequential control, and point of completion of a metric space.
Determine the relation between infinite differential functions and sequential distributions. Let {uk} be a sequence of the space D(() with infinite differentiable limit u. Therefore, there exists a compact set K of ( such that the support of all functions uk belong to К, and the sequences of all derivatives of uk converge to the derivatives of u uniformly on К. Then we can choose the sequence {uk} as {(k} with order ( = 0. It is obviously, that this sequence is fundamental. Therefore, it determine a distribution u' because of Definition 8.7. Another sequence of D(() with limit u is equivalent to {uk}. It determine the same distribution u'. Hence, for all infinite differentiable function u there exist a set of the fundamental sequences with limit u. Note that the stationary sequence with element u belongs to this set too. Determine the operator  А : D(() ( S(() such that  Аu = u' (see Figure 8.8).
Each element u' of the image of the set D(() by the operator A is determine by the convergent to a same limit sequences of infinite differentiable functions. Then we can choose this limit as the pre-image of u'. Therefore, there exists the bijection between the set D(() of infinite differentiable functions and the set of convergent fundamental sequences on D(() (see Figure 8.8). Thus, each infinite differentiable function can be identified with a sequential distribution. This is an analogue of the Cantor real number and other sequential objects. 
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Figure 8.8. The set D(() is isomorphic to the subset of S((). 

Example 8.9. Divergent fundamental sequence of test functions. Consider one-dimensional case with 
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 Determine the sequence {(k} of D(() that is tends uniformly to the function (see Figure 8.9)   
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The first generalized derivative of ( is equal to ½ for all negative values of x, and this is equal to –½ for all its positive values. Then the second generalized derivative of ( is equal to –(. Consider now the sequence {uk} of D((), where uk is the second derivative of (k. Then this sequence is fundamental on the space D((), because this is the sequence of second derivatives of the uniformly convergent functions. However, it does not have the infinite differential limit, because –(  is the distribution (see Example 2.1). Thus, the space D(() is non-complete with respect to the considered notion of fundamentality. Therefore, there exists elements of the space S(() that are not belong to the image of the set D(() by the operator A. There are the analogues of the irrational numbers, the elements of completion of non-complete metric that are not isometric to elements of the given metric space, p-adic numbers that are not rational, and the sequential controls that are not associated with usual controls.
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Figure 8.9. The sequence {(k}.
We know that each result of the theory of Cantor real numbers has an analogue of the corresponding Weierstrass and Dedekind theory. Analogically, each property of the sequential p-adic numbers has an analogue in its algebraic theory. A similar situation is true for distributions too. Determine the properties of the set of sequential distributions. We shall use here the method, which was be used for the analysis of other sequential objects. We will transfer some properties of infinitely differentiable functions to distributions, just as the basic characteristics of rational numbers were transferred to real numbers. 
For all elements u and v of the set S(() we choose the sequences representing them {uk} and {vk} of the space D((). By its fundamentality, for any compact set K of ( there exist multiindexes ( and , and uniformly convergent on К sequences such that the uk and vk are equal to the corresponding derivatives of the elements of these sequences.  Earlier it was noted that the order of the derivatives in determining the fundamental sequences can be arbitrarily increased. Determine the multiindex  such that each its component is equal to the maximal of the corresponding components of the vectors ( and . Therefore, there exists sequences {(k} and {(k} of D(() such that the following equalities hold 
D(k = uk, D(k = vk.
Then we get
D(k + (k) = (uk + vk),
besides the sequence {(k+(k} is uniformly convergent on К. Thus, the sequence of sum 
{uk + vk} is fundamental on D((). By Definition 8.7, this determines a distribution that is called the sum  u + v of the considered distribution. One can prove that this value does not depend from the choice of the representations of the summands. 
Remark 8.23. This result is substantiated in the same way as the analogous property for real numbers (see Chapter 4).
Analogically, the product of the distribution u by a number a is the distribution that is determined by the sequence {аuk}, where {uk} is a representation of the distribution u. Finally, the ( order sequential derivative of the distribution u is the distribution that is determined by the sequence {D(uk}. Note that the operation of addition, multiplication by number and differentiation of the sequential distributions have the same properties as the analogical operations of Schwartz distributions (see Table 8.3). 
Table 8.3. Schwartz distributions and sequential distributions 

	object
	Schwartz distribution u
	sequential distribution u

	representation
	<u,(>
	[uk]

	addition
	<u+v,(> = <u,(> + <v,(>
	[uk] + [vk] = [uk+vk]

	multiplication by number
	a <u,(> = <au,(>
	a[uk] = [auk]

	differentiation
	< Du,(> = -<u,D(>
	D[uk] = [Duk]


Determine the convergence on the set S((). Consider a sequence {un} of distributions. Let {un^k} be a fundamental sequence of infinite differential functions that determines the distribution un. The sequence {un} converges to the zero element of the linear space S((), if there exists a compact subset К of ( such that the supports of all functions un^k belong to К, and for all n un^k ( 0 uniformly on K as k((. The convergence un ( u in S(() is true whenever the sequence of difference {un – u} tends to zero. The set S(() with corresponding topology and the determined operations is the linear topological space, i.e. the algebraic operations are continuous. 
Remark 8.24. This topology is not metrizable, which, however, is not a serious obstacle to subsequent analysis.
Thus, the sequential distributions saves the most important properties of the Schwartz distributions. The existence of the natural relations between two interpretations of distributions will make it possible in the future to establish a connection between the different forms of solutions of the problems of mathematical physics (see Chapter 9). 

Note an explicit analogy with the theory of real numbers, where there are also the different equivalent interpretations. Although the class of equivalent fundamental sequences of rational numbers is not an infinite decimal fraction or a cut of the set of rational numbers, any action on Cantor real numbers corresponds to an absolutely analogous action on Weierstrass real numbers and Dedekind real numbers. Since mathematics does not operate with concrete objects, but with their properties, two isomorphic (that, possesses the same properties) objects do not differ here. In this connection, certain interpretations of the distributions can be identified like the real numbers of Cantor, Weierstrass and Dedekind. As a consequence, the standard notation D'(() is also used for the set of all sequential distributions too. 
Note, however, certain advantages of the sequential approach in the theory of distributions. This approach is preferable for the practical work with distributions. If, for example, it is necessary to implement the -function on the computer, then hardly anything can give the possibility of its representation in the form of a linear continuous functional on the set of infinitely differentiable functions. At the same time, its interpretation as the limit of a sequence of infinitely differentiable functions allows us to approximate this object with any degree of exactness by smooth functions (see Figure 8.7) that allow direct calculation. This circumstance to a large extent predetermines the constructivity of the sequential models of physical processes that will be determined later (see Chapter 9). Similarly, for practical work with irrational numbers like ( or (2, Cantor's interpretation is preferable, which allows us to approximate them arbitrarily by exactness rational numbers.

Remark 8.25. The sequential method also provides additional possibilities for the definition of multiplication of distributions. In particular, let as consider two distributions u and v. By Definition 8.7, these represented by equivalence classes of fundamental sequences of infinitely differentiable functions. Consider its arbitrary representations {uk} and {vk}. If the sequence of products {ukvk} is also fundamental, and the corresponding equivalence class does not depend on the choice of representing sequences, then it defines a distribution that is the product of u(v of the distributions u and v. Unfortunately, the product of distributions not always exists. This is true, for example, for the square of (-function. The products sequence of elements of fundamental sequences of infinite dimensional functions is not always fundamental. Nevertheless, while the Schwartz method, in principle, does not provide a reasonable way of the distribution multiplication, in this case this possibility still persists. In this case, the method for determining multiplication is practically the same as the method for specifying other operations. Moreover, even in the general case the possibility of a reasonable interpretation of the equivalence class of the sequence of infinitely differentiable functions {ukvk} is preserved as a product of the distributions of u and v, although the object obtained in this case belongs to a larger space than D'(() [About the distribution multiplication problem see, for example, Egorov Colombeaux]. These considerations serve as additional confirmation of the effectiveness of the sequential approach in the theory of distributions.  
We need only give a Definition of Sobolev spaces, which are the most important class of function spaces used in mathematical physics and connected with the theory of distributions.
8.4. Sobolev spaces
The definition of the Sobolev spaces is based, at first, on the spaces of integrable functions, and, secondly, on the notion of generalized derivatives. It is not important here, which interpretation of distributions is used for definition of the generalized derivatives. Give now some information about the spaces of integrable functions [With the theory of spaces of integrable functions, one can get acquainted in more detail in the textbook on functional analysis, see, for example,…]. 

Let ( be again an open set of the n-dimensional Euclid space. Consider measurable functions u = u(x) that are Lebesgue integrable with degree 
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Remark 8.26. We do not determine the Lebesgue measure and the corresponding notions of measurable function and integral. The theory is very good described in literature [About Lebesgue measure, measurable functions, Lebesgue integral see, for example,… ]. 
Two measurable functions on the set ( are equivalent, if it are equal almost everywhere, i.e. measure of the set, where they differ is equal to zero [Each countable set has zero measure. However, there exists the infinite non-countable sets with zero measure. This is true, for example for the Cantor set, see Гелбаум Олмстед]. The space 
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 is the set of the equivalent classes of measurable functions that satisfy the inequality (8.5). Determination here the operations of addition and multiplication by number with using the standard technique of definition of procedures on factor-set. It will be addition and multiplication by number at the almost point of (. Then   
[image: image86.wmf]()

p

L

W

  became the linear space. Determine here the norm by the equality 
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Then we have the linear normalized space that is Banach. The most important is the space 
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Remark 8.27. The necessity of considering not simply measurable functions, but of the corresponding equivalence classes, is due to the following circumstance. One of the general properties of the norm is its equality to zero for the zero element of the space only. However, the Lebesgue integral is equal to zero whenever the corresponding integrand is zero almost everywhere. Thus, there exists an infinite set of measurable functions, the integral of which is equal to zero [For example the integral of the Dirichlet function that is equal to one at the rational and equal to zero at the irrational is equal to zero. This measurable function is equivalent to the function that is equal to zero everywhere.]. All of them are equivalent to each other in the sense described above. Hence, identifying them all, i.e. passing to the corresponding equivalence class, we eliminate the considered non-uniqueness of the functions with zero integral, and hence we achieve the corresponding axiom of the norm.

Remark 8.28. We again encounter the situation, where an equivalence class is the object of consideration. However, when we consider integrable functions and elements of Sobolev spaces, we shall everywhere simply speak of functions, although in fact we are dealing with the corresponding equivalence classes.
Remark 8.29. The space 
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 is the completion of the space of continuous functions with integral norm and the space of Riemann integrable functions (see Caption 4). 
Now we can give the strict definition of the Sobolev spaces.
Definition 8.8. Sobolev XE "пространство:Соболева"  space 
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, m is a natural number. 

Remark 8.30. The elements of Sobolev spaces are integrable functions. Therefore, the classical derivatives are non-applicable for this case. Hence, we use generalized derivatives that is determined by distributions theory. 

The space 
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Definition 8.9. Sobolev XE "пространство:Соболева"  space 
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 such that its elements are equal to zero on the boundary of ( with all its generalized derivative with respect to the interior normal of degree less than m. 
The space 
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Remark 8.31. We can consider here the high derivatives only. This is impossible for the general spaces 
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, because for this case from equality to zero of this norm it follows that the m-1 degree derivatives of the considered function is constant that contradict the property of the norm. However, for the space 
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  these derivatives are equal to zero on the boundary, and we do not have any contradictions with definition of the norm.
Consider the most important case 
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 Sobolev spaces 
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 The space 
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The set 
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 is Hilbert space too; its scalar product can be determined by easier formula
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The adjoint space for 
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The space 
[image: image116.wmf]2

()

L

W

 can be interpreted as 
[image: image117.wmf]0

().

H

W

 Therefore, Sobolev space 
[image: image118.wmf]()

m

H

W

 are determined for all integer numbers m [In reality it is possible to determine the Sobolev spaces with of non-integer degree too, see Lions-Magenes, …]. The generalized differentiation is the linear continuous operator from 
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The most important Sobolev space is 
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. The scalar product and the norm are determined here by the equalities 
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We consider often the space 
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and the norm
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The space 
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Particularly, for one-dimensional case we have the set 
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The norm of this space is
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The space 
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We consider the convergence of sequences of Sobolev spaces. Determine embedding properties.

Definition 8.10. Embedding of a Banach space X to a Banach space Y is continuous, if from 
[image: image137.wmf]k

uu

®

 in X it follows 
[image: image138.wmf]k

uu

®

 in Y. This embedding is compact if 
[image: image139.wmf]k

uu

®

 strongly in Y whenever 
[image: image140.wmf]k

uu

®

 weakly in X.
At first, embedding of the space 
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Theorem 8.2 (Sobolev embedding theorem [The proof of the Sobolev embedding theorem is given in …]). Let ( be a bounded set of 
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Particularly, the space 
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Remark 8.32. The functions from the space H1(a,b) are continuous. Then the product of the functions of this space belongs to H1(a,b). Therefore, the multiplication is the operation here.
Theorem 8.3 (Rellich–Kondrashov theorem [The proof of Rellich–Kondrashov theorem is given in …])). Under the regular enough boundary of the set (, embedding of the space 
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 The regularity supposition of the boundary is not necessary for compact embedding of the space 
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These results will be used for the analysis of the mathematical models of the heat transfer phenomenon.
Conclusions 
1. The determination of mathematical models of physical phenomenon requires the passage to the limit in the balance relations. 
2. The justification of the passage to the limit is based on the Cauchy criterion, according to which any fundamental sequence converges. 
3. The Cauchy criterion is applicable for the complete spaces only. 
4. Most spaces are incomplete.

5. A standard example of an incomplete space is the set of rational numbers.
6.  The divergent fundamental sequence of rational numbers becomes convergent if it is considered on the set of real numbers.
7. The set of real numbers has several interpretations.
8. By Cantor's interpretation, real numbers are understood as classes of equivalent fundamental sequences of rational numbers.
9. Cantor's interpretation is constructive, because of the possibility to approximate any real number with rational numbers with any degree of exactness. 
10. The technique of Cantor extends the incomplete metric space to the set of all classes of equivalent fundamental seuences of the original space that are the sequential objects. 
11. Each element of the completion can by approximated by elements of the initial space with arbitrary degree of exactness. 
12. The analysis of the classes of equivalent fundamental sequences and the transfer from them of different properties of the original space to its completion is the basis of the sequential method.
13. The typical examples of the sequential objects are the real and p-adic numbers, the sequential controls, and the distributions. 
14. Like real numbers, the theory of distributions has several interpretations, including the sequential one.

15. By sequential interpretation, each distribution can by approximated by smooth functions with arbitrary degree of exactness.
16. The distribution theory is the base of the Soboev spaces that is must functional spaces of mathematical physics. 

We noted the effectiveness of the sequential approach in analyzing a wide class of difference mathematical problems. Now we have to try to apply it to solve the initial problem of justifying the procedure for constructing a mathematical model. Moreover, taking into account that the theory of distributions, which has a sequential interpretation, is used in an essential way in the analysis of the generalized model of mathematical physics problems, it is hoped that in this way we will be able to substantiate a generalized approach in mathematical physics. Using the well-known relations between the classical and generalized approaches, one can try to justify the classical approach too.
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